As CMOS technology continues to scale down, the aging effect—known as negative bias temperature instability (NBTI)—has become increasingly prominent, gradually emerging as a key factor affecting device reliability. Accurate aging-aware static timing analysis (STA) at the early design phase is critical for establishing appropriate timing margins to ensure circuit reliability throughout the chip lifecycle. However, traditional aging-aware timing analysis methods, typically based on Simulation Program with Integrated Circuit Emphasis (SPICE) simulations or aging-aware timing libraries, struggle to balance prediction accuracy with computational cost. In this paper, we propose a multi-view graph learning framework for path-level aging-aware timing prediction, which combines the strengths of the spatial–temporal Transformer network (STTN) and graph attention network (GAT) models to extract the aging timing features of paths from both timing-sensitive and workload-sensitive perspectives. Experimental results demonstrate that our proposed framework achieves an average MAPE score of 3.96% and reduces the average MAPE by 5.8 times compared to FFNN and 2.2 times compared to PNA, while maintaining acceptable increases in processing time.