To ensure structural safety and integrity, a novel framework is developed for detecting the loosening of multi-bolt connections using wavelet entropy of vibro-acoustic modulation (VAM) signals. Wavelet entropy is employed as the dynamic index to capture the intricate time-frequency characteristics that are indicative of the connection status. Taking the wavelet entropy vectors as input, the proposed framework distinguishes itself by integrating a Transformer model for high-dimensional feature extraction with the recursive feature elimination (RFE) for essential feature selection, followed by a support vector machine (SVM) model for classification. Specifically, the Transformer model with innovative positional encoding capability helps to extract the time-dependent transient features that are sensitive to the bolt loosening. The RFE process reduces the data dimensionality while discerning the diagnostic information for more accurate classification. Through the experiment on a four-bolt joint, the identification results with cross-validation showed high accuracy and robustness of the proposed framework across various loosening cases. It outperformed the traditional SVM, long short-term memory network (LSTM), convolutional neural network (CNN)-SVM models without and with RFE, as well as the Transformer-SVM model without RFE, achieving an accuracy increase of 15.72%, 11.74%, 9.47%, 5.49%, and 5.06%, respectively. The proposed framework was demonstrated to be able to learn the damage-sensitive features more effectively from wavelet entropy data, marking a significant advancement in the health monitoring of engineering structures with high-strength bolt connections.
Read full abstract