Abstract

Backward erosion piping (BEP) is a complex degradation mechanism in geotechnical flood protection infrastructure (GFPI) that is still relatively less understood, particularly when considering its time-dependent features. This manuscript presents a novel dual random lattice modeling approach for three-dimensional simulation of BEP, with a focus on its evolution over time. The key novelty of this presented framework is twofold: (1) we propose and incorporate a novel constitutive relationship for computation of time-dependent soil erosion based on the theory of rate processes, and (2) we devise an algorithm for calculation of coupled degradation of the dual lattices for accurate computation of 3-D hydraulic gradients. The constitutive relationship was developed from fundamental granular physics, and brings the potential to provide deeper fundamental physical understanding of the phenomenon. The capabilities of the modeling framework are investigated by comparison with available laboratory experiments which illustrates good agreement in the spatial advancement of piping erosion, pipe progression speeds, as well as the evolution of local gradients. To the best knowledge of the authors, the presented model is the first to be able to capture all of the aforementioned features when simulating BEP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call