Curcumin (CUR) exhibits potential inhibitory effects on tumor growth; however, its hydrophobicity and instability limit its clinical applications. In the present study, we developed CUR nanoparticles (CUR-NPs) and evaluated their biochemical characteristics. Cell uptake and proliferation were assessed using scratch and Transwell assays, respectively. Western blotting was performed to investigate the expression levels of proteins related to the NF-κB/PRL-3 signaling pathway, inflammatory response, cell proliferation, and cell migration in SKOV3 cells. Our findings showed that the blank vector was not cytotoxic to cells, allowing us to disregard any effects caused by the vector itself. CUR-NPs exhibited concentration- and time-dependent inhibitory effects on cell proliferation, surpassing those of CUR alone. Increasing the concentration of CUR-NPs resulted in a reduced cell scratch-healing ability and lower chamber migration capacity. Compared to the control group, expression levels of proteins associated with NF-κB/PRL-3 signaling pathway, inflammatory response (TNF-α and IL-6), cell proliferation (cyclin E1 and cyclin A1), as well as cell migration (N-cadherin and vimentin) were significantly elevated in the lipopolysaccharide (LPS) stimulation and NF-κB p65 overexpression groups. Conversely, E-cadherin expression was significantly decreased under these conditions. However, treatment with high concentrations of CUR-NPs effectively reversed these changes. These results highlight the significant ability of CUR-NPs to inhibit human ovarian cancer cell proliferation and migration, while suppressing inflammatory responses through the regulation of the NF-κB/PRL-3 signaling pathway.
Read full abstract