Recent studies have shown that 1-oleo-2-palmito-3-linoleyl glycerol (OPL) is the most abundant triacylglycerol in human breast milk in China. Epidemiologic studies have shown that sn-2 palmitate improves the absorption of fatty acids and calcium in infants. However, there have been few studies of the specific mechanism by which OPL affects intestinal function. In the present study, we have characterized the effects of various levels of OPL supplementation on the development of the intestinal epithelium and the intestinal microbiota of neonatal mice. OPL supplementation increased the body masses and intestinal lengths of weaned mice and promoted defecation. These positive effects were related to the effect of OPL to promote the development of intestinal villi and crypts. OPL increased the expression of the intestinal stem cell markers Olfm4 and Sox9 in the jejunum and ileum, which promoted their differentiation into goblet cells and Paneth cells. It also promoted the integrity of the epithelial barrier by increasing the secretion of mucin 2 and lysozyme 1 and the expression of the tight junction proteins occludin, ZO1, claudin 2, and claudin 3. More importantly, we found that low dose-OPL promotes the transformation of the intestinal microbiota of neonatal mice to the mature state in 3-month-old mice, increases the proportion of Firmicutes, and reduces the proportion of Bacteroidota. The proportions of anaerobic genera of bacteria, such as Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ligilactobacillus, and Bifidobacterium were higher, as were the key producers of short-chain fatty acids, such as Bacteroides and Blautia. OPL also increased the butyric acid content of the feces, which significantly correlated with the abundance of Lactobacillus. High-dose OPL tended to be more effective at promoting defecation and the development of the villi and crypts, but these effects did not significantly differ from those achieved using the lower dose. A low dose of OPL was more effective at increasing the butyric acid content and causing the maturation of microbes. In summary, the OPL supplementation of newborn mice promotes the establishment of the intestinal epithelial layer structure and barrier function, and also promotes the transformation of the intestinal microbiota to a mature state. This study lays a theoretical foundation for the inclusion of OPL in infant formula and provides a scientific basis for the development of intestinal health products.
Read full abstract