Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen)on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3β in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3β/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF-α and IL-23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen-treated, Th17 differentiation-inducing cell-conditioned medium significantly up-regulated the expression of tight junction proteins ZO-1, Occludin, and Claudin-5 in murine aortic endothelial cells. Administering the GSK3β inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up-regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3β, which reduces endothelial cell injury and up-regulates tight junction protein expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.