The goat breeding industry on the Tibetan Plateau faces strong selection pressure to enhance fertility. Consequently, there is an urgent need to develop goat lines with higher fertility and adaptability. The ovary, as a key organ determining reproductive performance, is regulated by a complex transcriptional network involving numerous protein-coding and non-coding genes. However, the molecular mechanisms of the key mRNA–miRNA–lncRNA regulatory network in goat ovaries remain largely unknown. This study focused on the histology and differential mRNA/miRNA/lncRNA between Chuanzhong black goat (CBG, high productivity, multiple births) and Tibetan goat (TG, strong adaptability, single birth) ovaries. Histomorphological analysis showed that the medulla proportion in CBG ovaries was significantly reduced compared to TG. RNA-Seq and small RNA-Seq analysis identified 1218 differentially expressed (DE) mRNAs, 100 DE miRNAs, and 326 DE lncRNAs, which were mainly enriched in ovarian steroidogenesis, oocyte meiosis, biosynthesis of amino acids and protein digestion, and absorption signaling pathways. Additionally, five key mRNA–miRNA–lncRNA interaction networks regulating goat reproductive performance were identified, including TCL1B–novel68_mature–ENSCHIT00000010023, AKAP6–novel475_mature–ENSCHIT00000003176, GLI2–novel68_mature–XR_001919123.1, ITGB5–novel65_star–TCONS_00013850, and VWA2–novel71_mature–XR_001919911.1. Further analyses showed that these networks mainly affected ovarian function and reproductive performance by regulating biological processes such as germ cell development and oocyte development, which also affected the plateau adaptive capacity of the ovary by participating in the individual immune and metabolic capacities. In conclusion, we identified numerous mRNA–miRNA–lncRNA interaction networks involved in regulating ovarian function and reproductive performance in goats. This discovery offers new insights into the molecular breeding of Tibetan Plateau goats and provides a theoretical foundation for developing new goat lines with high reproductive capacity and strong adaptability to the plateau environment.
Read full abstract