Abstract
BackgroundThe gut microbiota play an important role in maintaining host metabolism, the immune system and health, while sex, genotype, diet and health have specific effects on the composition of the gut microbiota. Therefore, to explore the sex differences in the structure and function of rumen microbiota in Tibetan goats, herein we analyzed sex differences in rumen fermentation parameters, rumen microbiota and the expression of genes related to VFA transport in Tibetan goats.ResultsThe results showed that the contents of acetic acid and propionic acid in the rumen of TGM (Tibetan goat male) were significantly higher than those in TGFm (Tibetan goat female) (P < 0.05), and total VFAs was significantly higher in TGM than TGFm (P < 0.05). Expression of the VFA transport-related genes DRA, AE2, MCT-1, NHE1, and NHE2 in the rumen epithelium of TGFm was significantly higher than that in TGM. Analysis of the composition and structure of the rumen microbiota revealed significant sex differences. At the phylum level, Firmicutes and Bacteroidetes were the dominant phyla in Tibetan goats. In addition, Fibrobacteres and Spirochaetes had significantly greater relative abundances in TGFm than in TGM (P < 0.05). At the genus level, the relative abundance of Fibrobacter, Ruminococcus_1 and Pyramidobacter was significantly higher in TGFm than in TGM (P < 0.05). The functional prediction results showed that replication, recombination and repair, RNA processing and modification were mainly enriched in TGFm (P < 0.05).ConclusionsCorrelation analysis revealed significant associations of some rumen microbiota with the fermentation product VFAs and VFA transport-related genes. We concluded that yearling TGM and TGFm have distinct fermentation and metabolism abilities when adapting to the plateau environment, which provides a certain sex reference basis for Tibetan goat adaptation to the plateau environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.