Abstract

Simple SummaryIn the process of domestication, goats have undergone long-term artificial and natural selection, leading to differences among goat breeds and leaving different selection traces on the genome. However, the genetic components underlying high-altitude adaptation remain largely unknown. Here, we genotyped four goat breeds using the Illumina Caprine 50K single nucleotide polymorphism (SNP) Chip. One highland breed (Tibetan goat) compared with three lowland breeds (Huanghuai goat, Taihang goat and Xinjiang goat) to identify the molecular basis of high-altitude adaptation. So, we investigated selection signatures using the di statistic of four goat breeds and some genes in Tibetan goats related to high-altitude adaptation were identified. In addition, q-PCR validated the gene expression level in Tibetan goats and Huanghuai goats. This information may be valuable for the study of the genetic uniqueness of Tibetan goats and increased understanding of the hypoxic adaptation mechanism of Tibetan goats on the plateau. Tibetan goat is an ancient breed, which inhabits the adverse conditions of the plateaus in China. To investigate the role of selection in shaping its genomes, we genotyped Tibetan goats (Nagqu Prefecture, above 4500 m) and three lowland populations (Xinjiang goats, Taihang goats and Huanghuai goats). The result of PCA, neighbor-joining (N-J) tree and model-based clustering showed that the genetic structure between the Tibetan goat and the three lowland populations has significant difference. As demonstrated by the di statistic, we found that some genes were related to the high-altitude adaptation of Tibetan goats. Functional analysis revealed that these genes were enriched in the VEGF (vascular endothelial growth factor) signaling pathway and melanoma, suggesting that nine genes (FGF2, EGFR, AKT1, PTEN, MITF, ENPEP, SIRT6, KDR, and CDC42) might have important roles in the high-altitude adaptation of Nagqu Tibetan goats. We also found that the LEPR gene was under the strongest selection (di value = 16.70), and it could induce upregulation of the hypoxic ventilatory response. In addition, five genes (LEPR, LDB1, EGFR, NOX4 and FGF2) with high di values were analyzed using q-PCR. Among them, we found that LEPR, LDB1 and FGF2 exhibited higher expression in the lungs of the Tibetan goats; LEPR, EGFR and LDB1 exhibited higher expression in the hearts of the Huanghuai goat. Our results suggest that LEPR, LDB1, EGFR and FGF2 genes may be related to the high-altitude adaptation of the goats. These findings improve our understanding of the selection of the high-altitude adaptability of the Nagqu Tibetan goats and provide new theoretical knowledge for the conservation and utilization of germplasm resources.

Highlights

  • In China, there are approximately 58 native domestic goat breeds that are distributed widely across a range of environments [1]

  • Analysis of breeding history of these four Chinese indigenous breeds confirmed the results of the principal components analysis (PCA)

  • Our study demonstrates that many high-altitude adaptive genes in the Nagqu Tibetan goats are specific to that breed

Read more

Summary

Introduction

In China, there are approximately 58 native domestic goat breeds that are distributed widely across a range of environments [1]. Through long-term natural selection, they have acquired stable genetic characteristics in physiology, biochemistry and morphology to adapt to the low-oxygen environment on the plateau [3]. Their genetic background fully demonstrates the unique adaptability of plateau species in the long process of evolution. This selection might have left genetic footprints in the Tibetan goat genome, reflecting a phenotypic evolution driven by the adaptation to the local environments or different breeding objectives [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call