Forest road aggregate changes due to traffic. The physical processes that cause these aggregate changes need to be understood for more effective road management that can help reduce maintenance costs and efforts, and negative environmental impacts of forest roads. This study modeled three processes that could change the particle size distribution (PSD) of forest road aggregate: crushing (breaking down the surfacing material), subgrade mixing (moving upward of fine-grained, roadbed sediment), and sweeping (migration of loose aggregate particles to the shoulder and roadside by tire action). There are two types of sweeping: sweeping-out (dislodging large-size particles from tire tracks) and sweeping-in (accumulating large-size particles near the roadside and shoulder). Our study modeled the expected traffic-induced processes based on theoretical concepts and literature to examine how these processes change forest road aggregate PSD. Then the modeled results were compared with the observed PSDs from cross-sectional locations where traffic-induced processes likely occurred. Based on these comparisons, we enhanced the modeling and inferred how much the crushing, subgrade mixing, and sweeping-in processes changed the PSDs, but could not infer the sweeping-out process due to the difficulty in separating the sweeping-out from crushing. This study demonstrates that the traffic-induced processes could be modeled and quantified using the following assumptions: crushing was estimated by assuming a half logarithmic normal distribution with a mean of the crushed particle diameter and higher crushing rates for large-size particles; subgrade mixing was estimated by assuming the move-in of fine-grained subgrade soils from the road bed; and sweeping-in was estimated by assuming the move-in of large-size particles with a logarithmic normal distribution. Our modeling approach can offer insights on how traffic-induced processes affect road aggregate under various road and traffic conditions. This information can be useful in developing cost-effective road maintenance strategies and implementation plans.
Read full abstract