Abstract
The experimental proton resonance data for the reaction P+48Ti have been used to calculate and evaluate the level density by employed the Gaussian Orthogonal Ensemble, GOE version of RMT, Constant Temperature, CT and Back Shifted Fermi Gas, BSFG models at certain spin-parity and at different proton energies. The results of GOE model are found in agreement with other, while the level density calculated using the BSFG Model showed less values with spin dependence more than parity, due the limitation in the parameters (level density parameter, a, Energy shift parameter, E1and spin cut off parameter, σc). Also, in the CT Model the level density results depend mainly on two parameters (T and ground state back shift energy, E0), which are approximately constant in their behavior with the proton energy compared with GOE model. The RMT estimation used to calculate the corrections of the incompleteness proton resonance measurement data by using two methods; the conventional analysis method, which depends on the resonance widths and the updated, developed, tested and applied a new analysis method, which depends mainly on the resonance spacings. The spacing analysis method is found much less sensitive to non-statistical phenomena than is the width analysis method. Where the analysis of a given data set via these two independent analysis methods indicated the increasing in the reliability of the determination of the missing fraction of levels, the observed fraction f between 0.87+0.13−0.11 – 0.68+0.12−0.12 for different spin-parity of this reaction and then the distinguishability in the level density calculations can be achieved. The modified Porter Thomas distribution along with the maximum likelihood function have been used to get the missing levels corrections for 5 proton resonance sequences in the present reaction. To estimate the present long-range correlations for pure sequence of levels the mean square of the deviation of the cumulative number of levels from a fitted straight line represented by the Dyson and Mehta Δ3 statistic has been employed for spin parity 12+, and calculated the <Δ3> against the cumulative number of proton levels.
Highlights
Nuclear level densities (NLDs) are of special importance in predicting the distribution of all excited levels of a nucleus that presents a great challenge to our understanding of this complicated quantum system, compound nucleus
The theoretical research of level density started with the pioneering work of Bethe [2]. He has obtained a simple level density formula for a gas of non-interacting fermions with spaced non degenerate single particles. This formula based on the Fermi gas or the so- called Back Shifted Fermi Gas model (BSFG) and simple counting arguments
The formula proposed by Gilbert and Cameron [6] combined the BSFG formula at high excitation energies with the Constant Temperature (CT) formula for lower energies
Summary
( باستخدام نماذج متعددةP+48Ti) تقييم كثافة المستوي لبروتون يحرض رنين نووي للتفاعل. الخلاصة لحساب وتقييم كثافة المستوي باستخدام نماذجP+48Ti استخدمت بيانات رنين البروتون العملية للتفاعل. بينما, تتوافق مع الاخرين لنفس النموذجGOE وجد ان نتائج نموذج.برم –تماثل معين ولطاقة بروتون متغيرة. ذات قيم اقل اعتمادا على البرم اكثر من التماثل وذلك بسببBSFG بينت كثافة المستوي المحسوبة لنموذج. أعتمد نتائج كثافة المستوي اساسا علىCT عند النموذج, كذلك.(a, E1 and σc) المحددات في المعلمات. في.GOE والتي وجدت ان قيمها ثابتة التصرف مع طاقة البروتون مقارنة مع نموذج,(T and E0) المعلمات. : استخدم حساب تصحيحات البيانات المقاسة لرنين البروتون غير المتكاملة باستخدام طريقتينRMT تقدير. الاولى طريقة التحليل الاعتيادية والتي تعتمد على عرض الرنين والثانية التحليل المطور والمحور والذي وجد ان. لغرض تقدير التلازم.تصحيحات مستويات مفقودة ولسلسلة متكونة من خمس رنين بروتون في التفاعل الحالي
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.