The model of a three-phase voltage source inverter is examined based on space vector theory. SVPWM offers an improved outcome with the inverter as compared to the conservative SPWM technique for the inverter. There is a 15.5% upsurge in the line voltage of the inverter. SVPWM better exploits the available DC-link power with the SVPWM inverter. It has been revealed that the SVPWM method utilizes DC bus voltage extra competently and produces a smaller amount of harmonic distortion and easier digital realization in a three-phase voltage-source inverter. For converter‘s gating signals generation, the space-vector pulse width modulation (SVPWM) strategy lessens the switching losses by restricting the switching to two-thirds of the pulse duty cycle. A hypothetical study regarding the use of the SVPWM the three-level voltage inverter and simulation results are offered to prove the usefulness of the SVPWM in the involvement in the switching power losses lessening, output voltages with fewer harmonics. Nevertheless, despite all the above-cited benefits that SVPWM enjoys over SPWM, the SVPWM technique used in three-level inverters is more difficult on account of a large number of inverter switching states. The attained simulation outcomes were satisfactory. As prospects, future experimental works will authenticate the simulation results. A software simulation model is developed in Matlab/Simulink.