Abstract

To solve the problem of parameter mismatch in model predictive control (MPC), this paper presents a robust model predictive control method based on a fixed window optimization (FWO) algorithm for a three-level voltage source inverter that only needs to sample the current value. When compared with the traditional observer-based model predictive control (such as the Luenberger observer, sliding mode observer (SMO) and Kalman filter (KMF)), the proposed method does not require an observer with a complicated design, and its algorithm is simple and easy to understand. Meanwhile, high current sampling accuracy is not needed in the proposed method. However, it is necessary in some types of model-free predictive control. In addition, low switching frequency operation and delay compensation are also considered in this paper. In general, the proposed method is simple to implement and does not have high requirements in terms of the accuracy of its current sensor. Experimental results show that the proposed method can accurately estimate parameter values and improve the parameter robustness of MPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.