With the expansion of coal mining westward in China, water inrush from seam roofs has become a prominent safety problem during mining. The roof rock of the coal seam in the Shilawusu coal mine has the characteristics of a double-layer structure, and the overlying separation space formed in the mining process of the coal seam poses a risk of water inrush. To ensure the safety of coal mine production, considering the geological and hydrogeological data of the mining area, the core recovery rate, lithologic assemblage index, key aquifer thickness, hydrostatic head and lithologic structure index of the Zhidan Formation are selected as evaluation indexes. The index weights are calculated based on the attribute hierarchical model and coefficient of variation methods, and subjective and objective preference coefficients are introduced to determine the ranking of comprehensive indexes. The catastrophe progression method is improved, and a zoning prediction model for water inrush risk is established by the improved catastrophe progression method. The results show that only a tiny part of the mining area is in danger, and most areas are in the safe and transition zones. The model realizes the prediction of the risk of water inrush from the overlying separation layer in the study area and provides a theoretical basis for the prevention and control of water inrush from the overlying separation layer in coal mining.
Read full abstract