Abstract

Abstract Faults encountered during coal mining can compromise the continuity and integrity of the overburden, resulting in considerable differences in the stress, displacement, and failure fields of the rocks surrounding the fault zone. When a working face is located adjacent to a fault, the fault-disturbed overburden becomes activated and unstable along the fault plane, which could lead to mining disasters. The fault-adjacent overburden morphology during mining was analyzed using a physical model. A mechanical model of the stability of the fault-disturbed overburden was constructed. The criteria for determining the sliding failure of the overburden during mining were defined, from which the critical coal pillar width required to maintain the overburden stability was determined. The results indicate that an inverted trapezoidal block forms in the overburden due to the combined effects of mining and faulting. The morphology of this block is influenced by the coal pillar width, the height of the fractured zone, and the dip angles of fault and coal seam. The block is prone to sliding or rotational failure along the fault plane during mining. As the coal seam and fault dip angles increase, the critical coal pillar width for maintaining overburden stability decreases. Conversely, increasing coal seam thickness increases the critical coal pillar width. The critical width of coal pillar was determined to be 176 m, which was verified through field observations performed in the #3307 working face.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call