Abstract

Coal mining has gradually entered the deep mining era, and large-height mining is an important way to mine thick coal seams in the deep. The high coal wall will inevitably make the distribution of the overburden structure in the coal mining face more complicated, and the large buried depth will also cause more intense mine pressure. The study of the distribution and evolution of the overburden structure and stress in the mining site can provide theoretical guidance for safe mining. In this work, a physical similarity modeling test was carried out based on the physical–mechanical parameters of overburden rock and similarity theory, taking the mining of a deep, large-height working face in Pingdingshan Coal Mine as an example. The results show that the deformation and breakage of overburden rock in deep, large-height workings occurring during mining is persistent and not only in a short period of time. The breakage form of overburden can be categorized into two types based on the deformation characteristics: (I) non-separation-induced type, and (II) separation-induced type. Among these, the breakage induced by separation can be divided into two categories: (i) dominated by self-weight stress, and (ii) affected by shear cracks. It also summarizes the form of the overburden structure and the structural morphology of the stope. The overburden structure shows a “combined cantilever beam structure-articulated rock-slab structure-non-articulated rock-slab structure”. Among these, the periodic breakage of the upper cantilever beam evolved articulated and non-articulated rock-slab structure in the lower part, which weakened the supporting effect of the lower gangue and further aggravated the breakage of the upper overburden rock. The shape of the main structure of the stope mainly depends on the fracture line from the advancing coal wall to the upper overburden: from a rectangular shape without collapse to a trapezoidal shape at the initial stage of collapse, to a trapezoidal shape with multiple steps after the main roof collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.