The strength and thermoelectric properties of PbTe and Sn0.9Pb0.1Te medium-temperature polycrystalline specimens with p and n conductivity types, respectively, have been studied. The specimens have been produced using extrusion and spark plasma sintering. The strength parameters of the materials were studied using uniaxial compression at 20 to 500 °C. The structure of the materials was studied using X-ray diffraction and electron microscopy. The electrical conductivity and the Seebeck coefficient were measured simultaneously using the four-probe and differential methods. The temperature conductivity and the specific heat capacity were measured using the laser flash and differential scanning calorimetry methods. The PbTe and Sn0.9Pb0.1Te materials produced using extrusion and spark plasma sintering prove to be single-phase and have homogeneous compositions. For comparable synthesis methods, the dislocation density in the Sn0.9Pb0.1Te specimens is by an order of magnitude lower than in the PbTe ones. Study of the mechanical properties of n and p conductivity type specimens over a wide temperature range from 20 to 500 °C has shown that their deformation is plastic and has no traces of brittle fracture. For these plastic materials, the strength criterion has been accepted to be the arbitrary yield stress corresponding to the stress at a 0.2% deformation. The 20 °C yield stress of PbTe and Sn0.9Pb0.1Te is far higher for the specimens produced by extrusion. For all the test temperatures and synthesis methods the Sn0.9Pb0.1Te specimens have a higher strength than the PbTe ones. The PbTe and Sn0.9Pb0.1Te specimens produced by extrusion have better thermoelectric properties than the spark plasma sintered ones. The heat conductivity of the PbTe and Sn0.9Pb0.1Te specimens is almost the same regardless of compaction method.
Read full abstract