In this note, we present the state-of-the-art theory of bi-Sobolev mappings. We recall that f is a Sobolev homeomorphism if f belongs to Wloc1,1∩Hom(Ω;Ω′)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$W^{1,1}_\ ext {loc}\\cap \ extrm{Hom}(\\Omega ; \\Omega ')$$\\end{document}, and f is a bi-Sobolev map if and only if f and f-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f^{-1}$$\\end{document} are Sobolev homeomorphisms. This concept, introduced in Hencl et al. (J. Math. Anal. Appl. 355, 22–32 2009), plays a central role in Geometric Function Theory. For instance, we just mention here that maps of bi-Sobolev type are strictly related to the notion of mappings of finite distortion; see, among others, the papers (Hencl and Koskela 2014) Pratelli (Nonlinear Anal. 154, 258–268 2017).