Abstract

This paper investigates the finite/fixed-time synchronization problem of delayed inertial memristive neural networks (DIMNNs) using interval matrix-based methods within a unified control framework. By employing set-valued mapping and differential inclusion theory, two distinct methods are applied to handle the switching behavior of memristor parameters: the maximum absolute value method and the interval matrix method. Based on these different approaches, two control strategies are proposed to select appropriate control parameters, enabling the system to achieve finite and fixed-time synchronization, respectively. Additionally, the resulting theoretical criteria differ based on the chosen control strategy, with one expressed in algebraic form and the other in the form of linear matrix inequalities (LMIs). Numerical simulations demonstrate that the interval matrix method outperforms the maximum absolute value method in terms of handling memristor parameter switching, achieving faster finite/fixed-time synchronization. Furthermore, the theoretical results are extended to the field of image encryption, where the response system is utilized for decryption and expanding the keyspace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call