Abstract
In this study, we analytically, numerically, and experimentally investigated a high-performance confocal piezoelectric energy harvesting system. We achieved a significantly enhanced electrical performance through a Mikaelian lens, which achromatically focuses ambient elastic waves, resulting in the formation of a highly amplified strain energy field in the piezoelectric energy harvester. Previous studies on piezoelectric energy harvesting platforms have limitations, such as the focal position changing with operating frequencies and impedance mismatching owing to inclusions or holes. To address these problems, we utilized the self-focusing ability based on the conformal mapping theory and achromatic ability based on the Kirchhoff–Love thin plate theory to design our Mikaelian lens-based piezoelectric energy harvesting platform. The proposed platform demonstrates a remarkable elastic wave focusing ability at an identical focal position for a broad frequency range. The experimentally visualized wave fields matched well with the numerically calculated full-wave harmonic simulation results. We achieved highly amplified output power up to 1.44 mW within a broad range from 40 to 60 kHz out of the same focal point owing to confined elastic wave energy; the output power extracted at this confocal position was up to 3.76 times higher than that extracted at the lens start position. Our highly performance and broadband achromatic piezoelectric energy harvesting platform lays an attractive foundation for designing potential applications, such as wireless sensing, structural health monitoring, and biomedical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.