Solvation effects profoundly influence the characteristics and behavior of chemical systems in liquid solutions. The interaction between solute and solvent molecules intricately impacts solubility, reactivity, stability, and various chemical processes. Continuum solvation models gained prominence in quantum chemistry by implicitly capturing these interactions and enabling efficient investigations of diverse chemical systems in solution. In comparison, continuum solvation models in condensed matter simulation are very recent. Among these, the self-consistent continuum solvation (SCCS) and the soft-sphere continuum solvation models (SSCS) have been among the first to be successfully parameterized and extended to model periodic systems in aqueous solutions and electrolytes. As most continuum approaches, these models depend on a number of parameters that are linked to experimental or theoretical properties of the solvent, or that can be tuned based on reference data. Here, we present a systematic parameterization of the SSCS model for over 100 nonaqueous solvents. We validate the model's efficacy across diverse solvent environments by leveraging experimental solvation-free energies and partition coefficients from comprehensive databases. The average root means square error over all the solvents was calculated as 0.85 kcal/mol which is below the chemical accuracy (1 kcal/mol). Similarly to what has been reported by Hille et al. (J. Chem. Phys. 2019, 150, 041710.) for the SCCS model, a single-parameter model accurately reproduces experimental solvation energies, showcasing the transferability and predictive power of these continuum approaches. Our findings underscore the potential for a unified approach to predict solvation properties, paving the way for enhanced computational studies across various chemical environments.