Abstract

In this work, we theoretically investigate the feasibility of biphenylite, the van der Waals layered bulk structure from experimental biphenylene network monolayers, as an anode material for alkali metal ions. The results indicate that the theoretical properties of Li, Na, and K in biphenylite are generally beyond those in graphite. Li-biphenylite exhibits a high specific capacity of 744 mAh·g-1, with a corresponding voltage range of 0.90-0.36 V, low diffusion barrier (<0.30 eV), and small volume change (∼9.9%), far exceeding those of Li-graphite. Moreover, a novel self-enhanced storage mechanism is observed and unveiled, in which the heavy intercalation of Li atoms (i.e., electron doping) induces puckered distortion of the nonhoneycomb carbon frameworks to enhance the intercalation ability and capacity of Li ion via a chemical activation of carbon frameworks. Possessing excellent anode performance beyond graphite, biphenylite is a promising "all-around" anode material candidate for alkali metal ion batteries, especially for lithium ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call