Abstract

Triplet generations in heavy atom-free organic molecules are primarily revealed to proceed through singlet fissions (SFs) by investigating the contributions of SFs and intersystem crossings to the generation rates. The spin-flip long-range corrected time-dependent density functional theory calculations on 11 organic molecules known for triplet generation under photoirradiation are performed. The correlation between the descriptors for SF and the experimental singlet-to-triplet conversion rates strongly supports the predominance of SF progressions in all these molecules, corroborated by experimental observations of their triplet-triplet annihilations. Based on these findings, we propose updated conditions for SF progression: There is a high-absorption singlet state just above the triplet-triplet excitation of the chromophore dimer, or the singlet (triplet-triplet) excitation itself is responsible for photoabsorption. To the best of our knowledge, all organic molecules known for rapid triplet state generation fulfill these conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call