Abstract

We suggest the Doubly Multiplicative Error class of models (DMEM) for modeling and forecasting realized volatility, which combines two components accommodating long-run, respectively, short-run features in the data. Three such models are considered, the Spline-MEM which fits a spline to the slow-moving pattern of volatility, the Component-MEM, which uses daily data for both components, and the MEM-MIDAS, which exploits the logic of MIxed-DAta Sampling (MIDAS) methods. The parameters are estimated by the Generalized Method of Moments (GMM), for which we establish the theoretical properties and the equivalence with the Quasi Maximum Likelihood (QML) estimator under a Gamma assumption. The empirical application involves the S&P 500, NASDAQ, FTSE 100, DAX, Nikkei and Hang Seng indices: irrespective of the market, the DMEM’s generally outperform the HARand other relevant GARCH-type models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.