Ethnopharmacological relevanceIn ancient times, ginseng was used for hyperuricemia treatment as described in the classic traditional Chinese medical text Shang Han Lun. Recent studies have shown that common ginsenosides and rare ginsenosides (RGS) are the main active compounds in ginseng. RGS have higher activity and are less studied in the treatment of hyperuricemia. Aim of the studyTo determine whether RGS prevents and ameliorates potassium oxonate(PO)-induced hyperuricemia and concomitant spermatozoa damage in mice and the possible underlying mechanisms. Materials and methodsPotassium oxonate (PO, 300 mg/kg) induced hyperuricemia in mice via the oral administration of RGS (50, 100, or 200 mg/kg) or allopurinol (ALL, 5 mg/kg) for 35 days. Uric acid (UA) and xanthine oxidase (XO) levels were measured to assess the degree of histopathological damage in the liver, kidney, and testis, and renal creatinine (CRE), urea nitrogen (BUN), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and inflammatory factor (IL-1β) levels were measured to calculate the sperm density. Mechanisms were also explored based on blood and urine metabolomics and the gut microbiota. ResultsIn this study, we demonstrated that RGS containing Rg3, Rk1, Rg6, and Rg5 could reduce serum UA levels, inhibit serum and hepatic XO activity, reduce renal CRE and BUN levels, further restore renal SOD and GSH activities, reduce the accumulation of MDA in the kidneys, and attenuate the production of renal IL-1β. RGS was able to restore sperm density. Metabolomic analysis revealed that RGS improved sphingolipid metabolism, pyrimidine metabolism, and other metabolic pathways. 16S rDNA sequencing revealed that RGS could increase gut microbial diversity, restore the Firmicutes/Bacteroidetes (F/B) ratio, and adjust the intestinal microbial balance. Spearman's correlation analysis revealed a correlation between differentially metabolites and the gut microbiota. Lactobacillus and Akkermansia are the core genera. ConclusionRGS can be a candidate for the prevention and amelioration of hyperuricemia and concomitant sperm damage. Its mechanism of action is closely related to sphingolipid metabolism, pyrimidine metabolism, and the modulation of gut microbiota, such as Lactobacillus and Akkermansia.
Read full abstract