TsIIIA, the first μ-conotoxin from Conus tessulatus, can selectively inhibit rat tetrodotoxin-resistant sodium channels. TsIIIA also shows potent analgesic activity in a mice hotplate analgesic assay, but its effect on human sodium channels remains unknown. In this study, eight human sodium channel subtypes, hNav1.1- hNav1.8, were expressed in HEK293 or ND7/23 cells and tested on the chemically synthesized TsIIIA. Patch clamp experiments showed that 10 μM TsIIIA had no effects on the tetrodotoxin-sensitive hNav1.1, hNav1.2, hNav1.3, hNav1.4, hNav1.6 and hNav1.7, as well as tetrodotoxin-resistant hNav1.5. For tetrodotoxin-resistant hNav1.8, concentrations of 1, 5 and 10 μM TsIIIA reduced the hNav1.8 currents to 59.26%, 36.21% and 24.93% respectively. Further detailed dose-effect experiments showed that TsIIIA inhibited hNav1.8 currents with an IC50 value of 2.11 μM. In addition, 2 μM TsIIIA did not induce a shift in the current–voltage relationship of hNav1.8. Taken together, the hNav1.8 peptide inhibitor TsIIIA provides a pharmacological probe for sodium channels and a potential therapeutic agent for pain.
Read full abstract