Abstract

The pharmacological effects of the crude venom of the scorpion Tityus serrulatus or its isolated toxins have been widely studied. However, few studies are available on Tityus bahiensis venom. We recently discovered that T. serrulaus venom leads to the release of tetrodotoxin-resistant acetylcholine. Thus, our objective was to verify whether T. bahiensis venom could have a similar action in the jejunum. Furthermore, we evaluated the possibility that this action occur in other tissues innervated by the autonomic nervous system. Thus, organ bath studies were conducted to evaluate the contractile and relaxant effects of venom on the jejunum, vas deferens and aorta of rats in the presence or absence of tetrodotoxin. We observed that jejunum, vas deferens and aorta contracted when the T. bahiensis venom was applied. In the jejunum, the venom reveals a contractile component resistant to tetrodotoxin. It also was able to relax pre-contracted preparations of jejunum and aorta but not vas deferens. Only in the aorta, the relaxation was resistant to tetrodotoxin. The effects of scorpion venoms are attributed to its action on ionic channels leading to neuronal depolarization and neurotransmitter release. Our results indicated that a similar mechanism is present in the observed effects of the venom. However, another mechanism must be present in the venom-induced contraction in the jejunum and relaxation in the aorta. Possible involvement of tetrodotoxin-resistant sodium channels or non-neuronal release of neurotransmitters is discussed. We emphasize that the study of the Tityus scorpion's venom, especially T. bahiensis, is of great importance because it can unveil unknown pharmacological and physiological mechanisms of excitable cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call