We show by electron spin resonance (ESR) and Raman spectroscopies that the crystal phase transition of the lead-free double-perovskite Cs2AgBiBr6 has a profound symmetry-breaking effect on the high spin states of, for example, a transition-metal ion Fe3+ and the vibrational modes. It lifts their degeneracy when the crystal undergoes the cubic-tetragonal phase transition, splitting the six-fold degenerate S = 5/2 state of Fe3+ to three Kramer doublets and the enharmonic breathing mode Tg of the MBr6 octahedra (M = Ag, Bi, Fe) into Eg + Ag. The magnitudes of both spin and Raman line splitting are shown to directly correlate with the strength of the tetragonal strain field. This work, in turn, demonstrates the power of the ESR and Raman spectroscopies in probing structural phase transitions and in providing in-depth information on the interplay between the structural, spin, and vibrational properties of lead-free double perovskites, a newly emerging and promising class of materials for low-cost and high-efficiency photovoltaics and optoelectronics.