Sense of direction is an individual's ability to navigate within an environment and generate a mental map of novel environments. Although sense of direction is correlated with psychometric tests of spatial ability, it also reflects an individual's real-world spatial ability that is not fully captured by laboratory-based assessments. Sense of direction is known to vary widely in the population and has been shown to decline with age. However, other factors that contribute to an individual's sense of direction have not been well-characterized. Vestibular impairment has been linked to reduced spatial cognitive ability, which encompasses spatial memory and navigation skills. Several studies have shown that vestibular input is necessary for effective spatial cognition, notably accurate spatial navigation ability. These studies have typically considered laboratory-based spatial navigation assessments; however, the influence of vestibular function on variation in real-world sense of direction is unknown. In this study, we evaluated whether vestibular function is associated with self-reported sense of direction. Participants for this cross-sectional study were recruited from the Baltimore Longitudinal Study of Aging, a longstanding cohort study of healthy aging. In a modified version of the Santa Barbara Sense-of-Direction (SBSOD) Scale, participants rated statements about spatial and navigational abilities. A lower average score indicates poorer self-reported sense of direction. Vestibular function testing included cervical vestibular-evoked myogenic potential (VEMP) to assess saccular function, ocular VEMP to assess utricular function, and the video head-impulse test to assess semicircular canal function based on vestibular ocular reflex. The study sample included 82 participants with mean age of 71.0 (± 16.9) years and mean SBSOD score of 4.95(± 1.07). In a multivariate linear regression model, female sex and bilateral saccular loss were associated with a lower average SBSOD score. These data suggest that vestibular impairment contributes to the known variation in spatial navigation ability.
Read full abstract