Phase equilibria during solidification in the Ti–TiAl–DyAl2–Dy region of the Ti–Dy–Al system are studied by differential thermal analysis, X-ray diffraction, metallography, and electron microprobe analysis. The liquidus and solidus surfaces, vertical sections, and reaction scheme in the solidification range are presented. No ternary compounds are found in the studied composition range. It is shown that DyAl2 undergoes polymorphic transformation at ~1200°C. The αl and α2 phases that coexist only with solid phases in the binary Ti–Al system participate in equilibria with the liquid phase in the ternary Ti–Dy–Al system. The liquidus surface is characterized by the primary solidification fields of the phases based on βTi (β), high-temperature αTi (αh), lowtemperature αTi (αl), Ti3Al (α2), TiAl (γ), Dy2Al, Dy3Al2, DyAl, βDyAl2, αDyAl2, βDy, and αDy. The solidus surface has elven three-phase fields: β + (βDyAl2) + αl, (βDyAl2) + αl + α2, β + αh + (βDyAl2), αh + γ + (βDyAl2), (βDyAl2) + α2 + (αDyAl2), (DyAl) + (Dy3Al2) + (αDyAl2), (αDy) + β + αl, (DyAl2) + α2 + (Dy3Al2), (Dy3Al2) + α2 + (Dy2Al), α2 + αl + (Dy2Al), and αl + (αDy) + (Dy2Al). The first two fields result from invariant four-phase peritectic reactions, LP1 + β + (DyAl2) ⇄ αl and LP2 + αl + (βDyAl2) ⇄ α2 proceeding at 1130 ± 5°C and 1180 ± 7°C, respectively. The next eight three-phase fields result from invariant four-phase transition reactions: LU1 + β ⇄ αh + (βDyAl2) at 1325 ± 8°C, LU2 + αh ⇄ γ + (βDyAl2) at 1260°C, LU3 + (βDyAl2) ⇄ α2 + (αDyAl2) at 1060 ± 4°C, LU4 + (DyAl) ⇄ (Dy3Al2) + (αDyAl2) at 1010 ± 9°C, LU5 + (αDy) ⇄ β + αl at 970 ± 4°C, LU6 + (αDyAl2) ⇄ α2 + (Dy3Al2) at 960 ± 8°C, LU7 + (Dy3Al2) ⇄ α2 + (Dy2Al) at 955 ± 16°C, and LU8 + α2 ⇄ αl + (Dy2Al) at ~930°C. The three-phase αl + (αDy) + (Dy2Al) field results from an invariant eutectic process, LE ⇄ αl + (αDy) + (Dy2Al), at 910 ± 15°C. The two-phase region in the solidus surface has a temperature maximum at 1343 ± 5°C, corresponding to the invariant three-phase le1 ⇄ β + (βDyAl2) reaction.
Read full abstract