The demand and use of dyes in modern life are increasing, and dye pollution has become a widespread concern worldwide; therefore, it is essential to develop novel environmentally friendly materials to deal with dye wastewater. Herein, a novel visible-light-driven ternary catalyst (BiOI/Bi2S3/MgIn2S4) was fabricated by employing the hydrothermal method. Compared to BiOI, the synthesized ternary catalyst exhibited better photocatalytic performance to decompose Congo red under visible light. Congo red was completely degraded after 0.5 h (0.5 g/L photocatalyst BiOI/Bi2S3/MIS-1) in the presence of visible light, which was 16.83 and 9.94 times of that of pure BiOI and MgIn2S4, respectively. A repetitive experiment showed that the BiOI/Bi2S3/MIS-1 could be reusable to degrade Congo red, demonstrating thatit has excellent mechanical properties. The enhanced photocatalytic capability was due to addition of BiOI and Bi2S3, which increased the charge separation as well as suppressed the recombination of photo-induced holes and electrons. Electron paramagnetic resonance technique and free radical trapping tests were employed to determine the radicals produced in BiOI/Bi2S3/MgIn2S4 in the presence of visible light, indicating that ·O2- and h+ were major active species to decompose Congo red under photocatalytic process. Seventeen main intermediates or reaction products were identified by UPLC-MS. The tentative degradation pathway of Congo red was also proposed.
Read full abstract