Abstract

Plasmonic Au nanoparticles (NPs) employing localized surface plasmon resonance excitation have exhibited superior visible light absorption for many organic transformations. In this work, we prepared a ternary composite catalyst comprising plasmonic Au NPs and a 2D/2D TiO2-C3N4 heterojunction via a photoreduction method of chloroauric acid in the presence of TiO2-C3N4. The introduction of plasmonic nanogold particles embedded onto the TiO2 surface of the TiO2-C3N4 heterojunction can significantly improve the photocatalytic performance during photooxidation of benzyl alcohol to benzaldehyde under mild conditions (1 bar air, white LED irradiation at ambient temperature). The productivity over Au/TiO2-C3N4 (0.25 mmolreactedBA gcat.-1 h-1) is found to be ∼5.6, 8.3, and 8.2-fold of these over the Au/TiO2, TiO2-C3N4, and C3N4-Au-TiO2 heterojunctions, respectively. Trapping experiments and electron spin resonance (ESR) spectroscopy confirm that the superoxide (·O2-) and hydroxyl radicals (·OH) act as the reactive oxygen species during photooxidation. Furthermore, the experimental results combined with density functional theory calculations reveal that the chemisorbed benzyl alcohol population, surface oxygen vacancies, and lifetime of photoexcited electrons and holes are largely improved by plasmonic Au NPs. This study on nanogold composites provides some hints for developing new efficient and practical photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.