Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some of the preferred devices for wireless passive temperature measurement. This paper presents the development of AlN/ScAlN SAW-based temperature sensors. Three methods were used to characterize the temperature characteristics of a thin-film SAW resonator, including direct measurement by GSG probe station, and indirect measurement by oscillation circuit and antenna. The temperature characteristics of the three methods in the range of 30–100 °C were studied. The experimental results show that the sensitivities obtained with the three schemes were −28.9 ppm/K, −33.6 ppm/K, and −29.3 ppm/K. The temperature sensor using the direct measurement method had the best linearity, with a value of 0.0019%, and highest accuracy at ±0.70 °C. Although there were differences in performance, the characteristics of the three SAW temperature sensors make them suitable for sensing in various complex environments.
Read full abstract