The objective of this study was to investigate the potential carcinogenic toxicity and mechanisms of PFAS in thyroid, renal, and testicular cancers base on network toxicology and molecular docking techniques. Structural modeling was performed to predict relevant toxicity information, and compounds and cancer-related targets were screened in multiple databases. The interaction of PFAS with three cancers and their key protein targets were explored by combining protein network analysis, enrichment analysis and molecular docking techniques. PFOA, PFOS, and PFHXS exhibited significant carcinogenic and cytotoxic effects. These compounds may induce cancer by mediating active oxygen metabolism and the transduction of phosphatidylinositol 3-kinase/protein kinase B signaling pathway through genes such as ALB, mTOR, MDM2, and ERBB2. Furthermore, the underlying toxic mechanisms may be linked to the pathways in cancer, chemical carcinogenesis through reactive oxygen species/receptor activation, and the FoxO signaling pathway. The results contribute to a comprehensive understanding of the effects of these environmental pollutants on genes, proteins, and metabolic pathways in living organisms. It revealed their toxicity mechanisms in inducing thyroid, renal, and testicular cancers, and provided a solid theoretical foundation for designing new environmental control strategies and drug screening initiatives. Additionally, the integrated application of network toxicology and molecular docking technology can enhance our understanding of the toxicity and mechanisms of unknown environmental pollutants, which is beneficial for protecting the environment and human health.