Abstract

One expected outcome of physics instruction is for students to be capable of relating physical concepts to multiple mathematical representations. In quantum mechanics (QM), students are asked to work across multiple symbolic notations, including some they have not previously encountered. To investigate student understanding of the relationships between expressions used in these various notations, a survey was developed and distributed to students at six different institutions. All of the courses studied were structured as “spins-first,” in which the course begins with spin-1/2 systems and Dirac notation before transitioning to include continuous systems and wave function notation. Network analysis techniques such as community detection methods were used to investigate conceptual connections between commonly used expressions in upper-division QM courses. Our findings suggest that, for spins-first students, Dirac bras and kets share a stronger identity with vectorlike concepts than are associated with quantum state or wave function concepts. This work represents a novel way of using well-developed network analysis techniques and suggests such techniques could be used for other purposes as well. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call