Republic of Korea is the seventh largest CO2 emission country in 2010 and the third fastest country in the growth of CO2 emission according to the European Commission's Joint Research Center. To mitigate the effect of CO2 on the climate change and global warming, Korea should reduce the anthropogenic CO2 emissions from sources such as the power plants and iron works. So carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising reduction options. This study established the CO2 transport strategies from the sources to sinks (such as the saline aquifers and gas fields in the Southeast Sea of the Korean Peninsula) for the offshore CCS in Korea. Also the cost estimations were carried out with the CO2 transport strategies. The CO2 transport methods suggested in this study were pipelines for both onshore and offshore, and a complex concept consisting of a pipeline for the source to coast (including the liquefaction facility on a barge) and a CO2 carrier for the coast to sink (including the temporary storage near offshore sink). With respect to the onshore pipelines, it was desirable to construct the CO2 transport pipelines along existing roads and/or LNG (liquefied natural gas) pipelines, as already realized in the United Kingdom (UK) and the Australia CO2 transport chains because of the cost and environmental aspects. The CO2 carrier was considered for the offshore CCS demonstration stage starting in 2016 to meet the timeline set by the Korea National CCS Master Plan. To optimize the CO2 transport systems, the advantages and drawbacks for the CO2 transport using the pipeline and shipping were analysed and the costs for them were also estimated with the CO2 transport strategies. There were several factors to be considered before constructing the CO2 pipelines including the amount of CO2, the terrain, the diameter of pipe, the transport pressure, the CO2 quality, the transport temperature, the CO2 state (i.e. gas, liquid or supercritical phases), etc. Also for the CO2 shipping it should be considered such as the amount of CO2, the shape and capacity of CO2 cargo tanks, the ship capacity, the liquefaction pressure and temperature, the type of the temporary storage, etc. Although the present study is now on-going to optimize the CO2 transport infrastructure for the offshore CCS in Korea, the preliminary results show the CO2 transport cost for the pipeline system is lower than that for the shipping in the present status.
Read full abstract