Motivated by Benney’s general theory, we propose new models for short wave–long wave interactions when the long waves are described by nonlinear systems of conservation laws. We prove the strong convergence of the solutions of the vanishing viscosity and short wave–long wave interactions systems by using compactness results from compensated compactness theory and new energy estimates obtained for the coupled systems. We analyze several of the representative examples, such as scalar conservation laws, general symmetric systems, nonlinear elasticity and nonlinear electromagnetism.