Abstract

In the context of systems of nonlinear conservation laws it can be crucial to use adaptive grids in order to correctly simulate the singularities of the solution over long time ranges while keeping the computing time within acceptable bounds. The adaptive space grid must vary in time according to the local smoothness of the solution. More sophisticated and recent methods also adapt the time-step locally to the space discretization according to the stability condition. We present here such a method designed for an explicit-implicit Lagrange-projection scheme, addressing physical problems where slow kinematic waves coexist with fast acoustic ones. Numerical simulations are presented to validate the algorithms in terms of robustness and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.