Abstract

We present a stabilized finite element method for the numerical solution of multiphase flow in porous media, based on a multiscale decomposition of pressures and fluid saturations into resolved (or grid) scales and unresolved (or subgrid) scales. The multiscale split is invoked in a variational setting, which leads to a rigorous definition of a grid scale problem and a subgrid scale problem. The subgrid problem is modeled using an algebraic approximation. This model requires the definition of a matrix of intrinsic time scales, which we design based on stability considerations. We illustrate the performance of the method with simulations of a waterflood in a heterogeneous oil reservoir. The proposed method yields stable, highly accurate solutions on very coarse grids, which we compare with those obtained by the classical Galerkin method or the upstream finite difference method. Although this paper is restricted to multiphase flow in porous media, the formulation is quite general and can be applied to other nonlinear systems of conservation laws, like the shallow water equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.