Disulfiram (DSF), as a sixpenny drug for the treatment of alcohol dependence, has demonstrated copper-dependent chemotherapy (CT) effects in recent years. However, as the most common modality in clinical treatment, prolonged use of CT will lead to multidrug resistance (MDR). In this work, a versatile and ingenious nanoparticle Cu/ZIF-8@DSF@GOx/HA (CZDGH) was constructed to deliver DSF, Cu2+ and GOx to tumor cells. Once internalized by tumor cells, GOx depletes glucose blocking the energy supply leading to ST. Then DSF chelates with Cu2+ in situ to generate CuETs, achieving toxicity-intensified CT, the reduced ATP in this process also inhibits the efflux function of P-gp. In the meantime, Cu2+ consumes glutathione (GSH) to enhance oxidative stress, and the converted Cu+ catalyzes internal and external sources of H2O2 into •OH, heightening chemodynamic therapy (CDT). The experimental results demonstrate remarkable multimodal synergistic anticancer effects that overcome MDR.
Read full abstract