Abstract

Hypothermal photothermal therapy, as a non-invasive therapy method, is becoming ever more prevalent. However, due to cellular heat resistance from the generation of heat shock proteins (HSPs) and the monotonicity of therapeutic modality, the antitumor efficacy is severely restricted. Herein, a self-supplied O2 multifunctional nanoplatform mediated by glucose oxidase (GOx) is developed, which may combine starvation therapy (ST) and hypothermal photothermal therapy (HPTT) for tumor therapy. The obtained nanoplatform, UM@ICG@GOX@HA (UMIGH), was assembled by the UIO-66 core, MnO2, indocyanine green (ICG) and hyaluronic acid (HA). GOx was introduced to decrease the ATP level thus alleviating the HSPs-mediated heat tolerance, while the loaded MnO2 could decompose intratumoral H2O2 into O2, which enhanced the effect of HPTT and ST. Due to the coated HA, UMIGH could target the high expressed CD44 in CT26 tumor cells. The active targeting and NPs-associated passive targeting promoted the uptake of nanoparticles. Furthermore, ICG encapsulated in UMIGH NPs could also accurately image tumors. This synergistic treatment strategy of HPTT and ST exhibited an excellent anti-proliferation effect on colon cancer cells in vitro and mouse xenograft model in vivo, which might bring an informatic strategy for future investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.