Arbovirus, a critical threat to human health, have complex and dynamic life cycles. With reports of Yellow fever virus (YFV) causing spillover from sylvatic transmission cycles, and dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) viruses expanding from urban to rural areas. We explored a multidisciplinary approach to analyze arbovirus transmission through vectors, and identify biological and sociodemographic determinants associated with their transmission risk in urban and rural areas in a Colombian municipality. We visited 178 urban and 97 rural households, registered sociodemographic characteristics and vaccination status for each of these households, collected adult and immature mosquitoes at the intra-, peri-, and extra-domicile, and surveyed forest patches in rural areas. Infections of YFV, DENV, ZIKV, and CHIKV in the mosquitoes collected in the wild were analyzed using a reverse transcriptase PCR. We identified various risk factors of transmission associated with a high Aedes aegypti infestation in urban areas and their presence in rural settlements and Haemagogus janthinomys and other sylvatic mosquitoes near urban areas. The collected Ae. aegypti females from urban areas had a high infection rate of YFV (5.8%) and CHIKV (58.8%), and those from rural settlements had a high infection rate of DENV (33%), CHIKV (16.7%), and ZIKV (16.7%). The infection rates of YFV in the thorax of the sylvatic mosquitoes H. janthinomys and Aedes serratus collected from the forest patches were 14.3 and 42.1%, respectively. We could discern the transmission determinants associated with climatic, socioeconomic, and anthropogenic factors and YFV vaccination status. This multidisciplinary approach for surveillance of arboviral diseases allowed us to independently detect and integrate factors indicating an early risk of rural transmission of DENV, CHIKV, and ZIKV and rural and urban outbreaks of YFV in the study area. This study provides a helpful tool for designing and focalizing prevention strategies.
Read full abstract