Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Read full abstract