Abstract

BackgroundNonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. NS1 is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. However, to date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated.MethodIn this study, potential phosphorylation sites in the swine influenza virus (SIV) NS1 protein were bioinformatically predicted and determined by Phos-tag SDS-PAGE analysis. To study the role of NS1 phosphorylation sites, we rescued NS1 mutants (Y73F and S83A) of A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability, cytokine production as well as the intracellular localization in cultured cells. Additionally, we used small interfering RNA (siRNA) assay to explore whether changes in the type I IFN response with dephosphorylation at positions 73 and 83 were mediated by the RIG-I pathway.ResultsWe checked 18 predicted sites in 30 SIV NS1 genes to exclude strain-specific sites, covering H1N1, H1N2 and H3N2 subtypes and identified two phosphorylation sites Y73 and S83 in the H1N1 SIV protein by Phos-tag SDS-PAGE analysis. We found that dephosphorylation at positions 73 and 83 of the NS1 protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-β expression but had no effect on nuclear localization. Knockdown of RIG-I dramatically impaired the induction of IFN-β and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-β response upon rSIV NS1 Y73F and rSIV NS1 S83A infection.ConclusionWe first identified two functional phosphorylation sites in the H1N1 SIV protein: Y73 and S83. We found that dephosphorylation at positions 73 and 83 of the NS1 protein affected the antiviral state in the host cells, partly through the RIG-I pathway.

Highlights

  • Swine influenza (SI) is a highly contagious respiratory disease that is characterized by fever, weight loss and acute respiratory problems

  • We found that dephosphorylation at positions 73 and 83 of the Nonstructural protein 1 (NS1) protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-β expression but had no effect on nuclear localization

  • Knockdown of Retinoic acid-inducible gene I product (RIG-I) dramatically impaired the induction of IFN-β and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-β response upon rSIV NS1 Y73F and rSIV NS1 S83A infection

Read more

Summary

Introduction

Swine influenza (SI) is a highly contagious respiratory disease that is characterized by fever, weight loss and acute respiratory problems. It is caused by influenza A virus (IAV), which belongs to the Orthomyxoviridae family. The major strains found in swine herds are the H1N1, H1N2 and H3N2 subtypes Because of their broad susceptibility, pigs are important hosts and are considered “mixing vessels” that can foster the generation of novel reassortant influenza viruses [3]. Nonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. To date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call