This article provides a comprehensive exploration of the imperative necessity for coupling the utilization of low-rank coal, sewage sludge, and straw. It studies the challenges and limitations of individual utilization methods, addressing the unique hurdles associated with feedstocks. It focused on achieving integrated and sustainable resource management, emphasizing efficient resource utilization, waste minimization, and environmental impact reduction. The investigation extends to the intricate details of reaction processes in co-processing, with a specific emphasis on the drying of raw materials to enhance combustion characteristics. The molding and preparation of feedstock are dissected, encompassing raw material selection, mixing, and the crucial addition of additives and binders. The proportions and homogenization of these feedstocks are intricately examined for uniformity and effectiveness. Furthermore, it presents theoretical approaches for investigating the co-combustion of these diverse feedstocks, contributing a solid foundation for future studies in this dynamic field. The findings presented in it offer valuable insights for researchers, practitioners, and policymakers seeking sustainable solutions in the co-disposal technology of these feedstocks. Therefore, it provides a holistic understanding of the challenges and opportunities in coupling the utilization of these selected feedstocks. By addressing individual limitations and emphasizing integrated resource management, the article establishes the groundwork for sustainable and efficient co-processing practices. The exploration of reaction processes gives a comprehensive framework for future research and application in the field of co-combustion technology. The insights gleaned from this study contribute significantly to advancing knowledge in the sustainable utilization of diverse feedstocks, guiding efforts towards environmentally responsible and resource-efficient practices.
Read full abstract