Abstract

The sustainable utilization of resources motivate us to create eco-friendly processes for synthesizing novel carbon nanomaterials from waste biomass by minimizing chemical usage and reducing energy demands. By keeping sustainability as a prime focus in the present work, we have made the effective management of Parthenium weeds by converting them into carbon-based nanomaterial through hydrothermal treatment followed by heating in a tube furnace under the nitrogen atmosphere. The XPS studies confirm the natural presence of nitrogen and oxygen-containing functional groups in the biomass-derived carbon. The nanostructure has adopted a layered two-dimensional structure, clearly indicated through HRTEM images. Further, the nanomaterials are analyzed for their ability towards the electrochemical detection of mercury, with a detection limit of 6.17 μM, while the limit of quantification and sensitivity was found to be 18.7 μM and 0.4723 μM μA−1 cm−2, respectively. The obtained two-dimensional architecture has increased the surface area, while the nitrogen and oxygen functional groups act as an active site for sensing the mercury ions. This study will open a new door for developing metal-free catalysts through a green and sustainable approach by recycling and utilization of waste biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call