Salinization is a global soil degradation issue threatening agricultural productivity and environmental sustainability. Native biochar is a promising soil amendment, but its high alkalinity limits its use in saline-alkali lands. Acidified biochar, with a lower pH, is theoretically more suitable. This study aims to evaluate the persistence of effects of acidified biochar one-off application on soil particle size distribution, physicochemical properties, water retention, temperature regulation, and evaporation conditions of saline-alkali soil, thereby verifying its feasibility and exploring the optimal application range. We conducted a three-year cotton field experiment using palm fruit branch biochar as the raw material, acidified with ferrous sulfate, which involved four biochar applications (0, 10, 20, and 30 t ha−1) and four irrigation quotas (60 %, 80 %, 100 % and 120 % ETc). The results indicated that the initial acidified biochar application slightly increased surface soil (0–20 cm) pH by 0.1 %–3.9 %, this negative effect was nearly eliminated by the third year. Biochar application significantly altered surface soil particle size distribution, increasing sand content by 1.6 %–8.4 %, and persistently improved soil hydraulic properties, with water holding capacity still showing a 6.5 %–16.7 % increase in the third year. Biochar enhanced soil thermal insulation and suppressed soil evaporation, but these benefits gradually diminished with increasing cultivation years. Acidified biochar effectiveness was closely linked to irrigation quota. Significant differences in soil water and heat indicators were observed between the 20 and 30 t ha⁻¹ biochar treatments only under low irrigation quotas. Under sufficient irrigation (100 % and 120 % ETc), the optimal biochar application range was 15–20 t ha⁻¹, while under low irrigation (60 % and 80 % ETc), the optimal range was 20–25 t ha⁻¹. This study demonstrated that acidified biochar one-off application has significant multi-year benefits in improving soil structure and hydrothermal properties, providing a scientific basis for the improvement and sustainable utilization of saline-alkali soil.
Read full abstract