Abstract

Linear waste management systems are unsustainable and contribute to environmental degradation, economic inequity, and health disparities. Among the array of environmental challenges stemming from anthropogenic impacts, the management of human excrement (human feces and urine) stands as a significant concern. Over two billion people do not have access to adequate sanitation, signifying a global public health crisis. Composting is the microbial biotechnology aimed at cycling organic waste, including human excrement, for improved public health, agricultural productivity and safety, and environmental sustainability. Applications of modern microbiome -omics and related technologies have the capacity to support continued advances in composting science and praxis. In this article, we review literature focused on applications of microbiome technologies to study composting systems and reactions. The studies we survey generally fall into the categories of animal manure composting, biosolids composting, and human excrement composting. We review experiments utilizing microbiome technologies to investigate strategies for enhancing pathogen suppression and accelerating the biodegradation of organic matter. Additionally, we explore studies focused on the bioengineering potential of microbes as inoculants to facilitate degradation of toxins such as pharmaceuticals or per- and polyfluoroalkyl substances. The findings from these studies underscore the importance of advancing our understanding of composting processes through the integration of emerging microbiome -omics technologies. We conclude that work to-date has demonstrated exciting basic and applied science potential from studying compost microbiomes, with promising implications for enhancing global environmental sustainability and public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.