ConspectusThe conversion of C1 molecules to methyl acetate through the carbonylation of dimethyl ether in mordenite zeolite is an appealing reaction and a crucial step in the industrial coal-to-ethanol process. Mordenite zeolite has large 12-membered-ring (12MR) channels (7.0 × 6.5 Å2) and small 8MR channels (5.7 × 2.6 Å2) connected by a side pocket (4.8 × 3.4 Å2), and this unique pore architecture supplies its high catalytic activity to the key step of carbonylation. However, the reaction mechanism of carbonylation in mordenite zeolite is not thoroughly established in that it is able to explain all experimental phenomena and improve its industrial applications, and the classical potential energy surface exerted by static density function theory calculations cannot reflect the reaction kinetics under realistic conditions because the diffusion kinetics of bulk DME (kinetic dimeter: 4.5 Å) and methyl acetate (MA, kinetic dimeter: 5.5 Å) were not well considered and their restricted diffusion in the narrow side pocket and 8MR channels may greatly alter the integrated kinetics of DME carbonylation in mordenite zeolite. Moreover, the precise illustration of the dynamic behaviors of the ketene intermediate and its derivatives (surface acetate and acylium ion) confined within various voids in mordenite has not been effectively portrayed.Advanced ab initio molecular dynamics (AIMD) simulations with or without the acceleration of enhanced sampling methods provide tremendous opportunities for operando modeling of both reaction and diffusion processes and further identify the geometrical structure and chemical properties of the reactants, intermediates, and products in the different confined voids of mordenite under realistic reaction conditions, which enables high consistency between computations and experiments.In this Account, the carbonylation process in mordenite is comprehensively described by the results of decades of continuous research and newly acquired knowledge from both multiscale simulations and in-(ex-)situ spectroscopic experiments. Three primary steps (DME demethylation to surface methoxy species (SMS), carbon-carbon bond coupling between SMS and CO to acetyl species, and methyl acetate formation by acetyl species and methanol/DME) have been respectively studied with a careful consideration of different molecular factors (reactant distribution, concentration, and attack mode). By utilizing the free-energy surface of diffusion and reaction obtained from AIMD simulations, a comprehensive reaction/diffusion kinetic model was formulated for the first time, illustrating the entire zeolite catalytic process. In this context, a comprehensive and informative analysis of the reaction kinetics of carbonylation in mordenite, including the function of the 12MR channels, 8MR channels, and side pockets in the adsorption, diffusion, and reaction of DME carbonylation, was performed. The different channels of mordenite play different roles in all ordered reaction steps, illustrating a highly organized ultramicroscopic reactor that is encompassed.
Read full abstract