Abstract

Cu-modified zeolites have enormous potential as the catalysts facilitating the conversion of methane to methanol. It becomes important to investigate the active sites and the reaction mechanisms involved. In this paper, several spectroscopic methods such as UV-vis diffuse reflectance spectroscopy (UV-visDRS), pulse electron paramagnetic resonance (EPR), diffuse reflectance Fourier transform infrared spectroscopy, and solid-state (13C MAS) NMR have been employed to characterize the state of the Cu sites and the intermediates formed during the catalyst activation and methane-to-methanol transformation on Cu/H-ZSM-5 zeolite with low (0.10 wt %) Cu content. UV-vis DRS and EPR data imply the presence of two types of Cu2+ cations bound to the zeolite framework Si-O--Al sites (Z). One of them is a species of the type Z[Cu(II)O] or Z[Cu(II)(OH)] with extra-framework O- or OH- ligands. The other one refers to Z2Cu(II) species without extra-framework O-containing ligands. CW EPR studies reveal that the Z2Cu(II) species are the major part of the Cu(II) sites present in the zeolite. 1H HYSCORE and DRIFTS data are supportive of the formation of a molecular complex of methane and Z2Cu(II) species, with a strongly polarized C-H bond and a 3.3 Å separation between the hydrogen atom of methane and Cu. 13C MAS NMR provides evidence for the formation of both the surface methoxy intermediate and physisorbed methanol. It is suggested that experimentally identified Z[Cu(II)O] or Z[Cu(II)(OH)] are those sites that provide a homolytic cleavage of the methane C-H bond to yield surface bound methoxy species and/or methanol molecule, the possibility that has been recently justified with density functional theory ( Kulkarni et al. Catal. Sci. Technol. 2018 , 8 , 114 ). The comparison of the amount of the surface methoxy intermediates formed and the number of different Cu(II) sites present in the zeolite allowed us to conclude the involvement of Z2Cu(II) sites in methane C-H bond activation. The mechanism of methane activation on Z2Cu(II) sites has been proposed. It includes two steps: (1) the formation of the molecular complex of methane with Z2Cu(II); (2) heterolytic dissociation of the polarized C-H bond affording surface copper(II) hydride and methoxy species, both bound to zeolite framework Si-O--Al sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call